
Android Malware Detection via
Graphlet Sampling

Tianchong Gao , Wei Peng, Devkishen Sisodia, Tanay Kumar Saha , Feng Li, and Mohammad Al Hasan

Abstract—Android systems arewidely used inmobile &wireless distributed systems. In the near future, Android is believed to dominate the

mobile distributed environment. However, with the popularity of Android-based smartphones/tablets comes the rampancy of Android-based

malware. In this paper, we propose a novel topological signature of Android apps based on the function call graphs (FCGs) extracted from

their Android App PacKages (APKs). Specifically, by leveraging recent advances on graphlet mining, the proposedmethod fully captures the

invocator-invocatee relationship at local neighborhoods in anFCGwithout exponentially inflating the state space. Using real benign app and

malware samples, we demonstrate that our method, App topologiCal signature throughgraphleTSampling (ACTS), candetectmalware and

identifymalware families robustly and efficiently. More importantly, we demonstrate that, without augmenting the FCGwith any semantic

features such as bytecode-basedvertex typing, local topological information captured by ACTS alone can achieve a highmalware detection

accuracy. Since ACTS only uses structural features, which are orthogonal to semantic features, it is expected that combining themwould

give a greater improvement inmalware detection accuracy than combining non-orthogonal semantic features.

Index Terms—Android, graphlet sampling, mobile applications, mobile malware, smartphone

Ç

1 INTRODUCTION

SOME rising trends in mobile distributed systems, e.g., the
wearable devices, the medical devices and the intelligent

vehicle systems, are setup on Android platforms following
the big success of it on smartphone market. Since Android
applications written in Java are specifically designed to have
as few implementation dependencies as possible, Android is
believed to be adaptive to the new market and dominate the
mobile distributed environment soon.

As the use of Android continues to grow, so does the
threat of malware. Malicious behaviors observed in such
malware include the theft of private information stored on
the device, device fingerprinting, abusing premium service,
and rooting the device as a backdoor for further attacks [39].
Detecting such malware is a critical task for the security
research community.

It is observed that variants of malware form families
through code sharing and their common lineage [39]. There-
fore, instead of identifying individual malware and extract-
ing a signature from it, we can identify the commonality
within the same malware family and generate signatures
that capture such commonality. Recently, various machine

learning/data mining (i.e., pattern mining) techniques are
applied to detect Android malware [1], [2], [9], [19], [33],
[36] or closely related tasks such as identifying repackaged
apps [37], [38]. Beyond the common pattern mining frame-
work, these works differ significantly in their selection and
construction of features, their quantification/metrication of
such features, their choice of pattern mining algorithms,
and, in totality of these fine points of design, their applica-
bility, robustness, and efficiency in detecting malware.

A number of different app representations have been stud-
ied for malware detection. For example, Yamaguchi et al. pro-
pose a compact representation of source code, the code
property graph, that combines abstract syntax trees, control
flow graphs, and program dependence graphs [33]. Other
approaches do not require the source, but instead focusing on
features at different abstract levels: from the low-level plat-
form opcode level [36], through the intermediate function
call [9] and Android framework API [1] level, to the high
semantic level that includes features such as network
addresses and Android specific artifacts such as permission
and Intents [2]. Yet, other works formulate malware detection
as different pattern mining tasks such as frequent subgraph
mining [19].

Due to the availability of off-the-shelf obfuscation solu-
tions (such as the free ProGuard [29] and the commercial
DexGuard [28]) and the growing number of Android apps, it
is critical for any proposed malware detection algorithm to
be robust and efficient.

Robust. Malware detection should be insensitive to non-
essential transformations. Non-essential transformations are
program transformations that do not fundamentally turn an
app into a different one. Examples of non-essential transfor-
mations include obfuscating long and descriptive function/
method names by replacing them with short and meaning-
less ones [29], and re-branding through textual, pictorial, or

� T. Gao and F. Li are with the School of Engineering and Technology, Indiana
University - PurdueUniversity Indianapolis, Indianapolis, IN 46202.
E-mail: {tgao, fengli}@iupui.edu.

� W. Peng is with the Intel Corporation, Folsom, CA 95630.
E-mail: wei.peng@intel.com.

� D. Sisodia is with the College of Arts and Sciences, University of Oregon,
Eugene, OR 97403. E-mail: dsisodia@cs.uoregon.edu.

� T.K. Saha and M.A. Hasan are with the School of Science, Indiana
University - Purdue University Indianapolis, Indianapolis, IN 46202.
E-mail: {tksaha, alhasan}@cs.iupui.edu.

Manuscript received 15 Dec. 2017; revised 31 Aug. 2018; accepted 2 Nov.
2018. Date of publication 12 Nov. 2018; date of current version 31 Oct. 2019.
(Corresponding author: Feng Li.)
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMC.2018.2880731

2754 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 12, DECEMBER 2019

1536-1233� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on October 07,2020 at 18:24:12 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6620-7707
https://orcid.org/0000-0001-6620-7707
https://orcid.org/0000-0001-6620-7707
https://orcid.org/0000-0001-6620-7707
https://orcid.org/0000-0001-6620-7707
https://orcid.org/0000-0002-7478-9222
https://orcid.org/0000-0002-7478-9222
https://orcid.org/0000-0002-7478-9222
https://orcid.org/0000-0002-7478-9222
https://orcid.org/0000-0002-7478-9222
mailto:
mailto:
mailto:
mailto:

animated resource replacement, or changing the layout of
the user interface [37].

Efficient. Malware detection should only take a reason-
able amount of time to decide whether an app sample is
malware or not. If the time is comparable with that of com-
mon commercial malware detection tools, we consider the
malware detection method to be sufficiently efficient.

In practice, efficiency and robustness are often at odds.
At one extreme, as two straightforward examples, crypto-
graphical hashes or package names are highly efficient but
fragile app signatures. They are efficient to obtain/compute
but can easily be changed without essentially affecting the
app [36]. At the other extreme, measuring similarities of
some high-level graph-based representation of the app,
such as code property graphs [33], are more robust, but, as
observed by Gascon et al. [9], “is a non-trivial problem
whose complexity hinders the use of these features for mal-
ware detection.”

Our first step towards robustness is to extract from the app
under investigation its function call graph (FCG) [9], in which
each vertex represents a Java method and each edge repre-
sents a method invocation. We concur with Gascon et al. [9]
that FCG is at a proper abstraction level for detecting mal-
ware: In addition to the non-essential transformations men-
tioned above, it is also immune to, for example, both lower-
level opcode/instruction obfuscation or higher-level content
encryption.

Based on the extracted FCG, we propose an efficient and
robust Android app signature that faithfully captures the
invocator-invocatee relationship between several functions,
i.e., the topology of local neighborhoods on the FCG. Instead
of using vertices and edges (or extension to 1-hop neighbor-
hoods [9]) on the FCG “as is,” we leverage recent advances in
graph mining to efficiently sample graphlets [23], [24] on the
FCG. Graphlets are small (e.g., less than 6), connected, ver-
tex-induced embedded subgraphs in an underlying graph,
which is the FCG in our case. In the spectrum of purely local
(e.g., individual vertices/edges and simple metrics such as
degrees) and fully global (e.g., betweenness centrality [3])
scope of the FCG, our graphlet-based signature takes a
unique position: It faithfully captures local topological infor-
mation at a fine-grained granularity without exponentially
inflating the state space.

Given these characteristics, we call our graphlet-based
signature a topological signature and, accordingly, name
our method App topologiCal signature through graphleT
Sampling (ACTS). In our experiments, ACTS achieves a cross-
validated accuracy as high as 87.9 percent. In comparison,
the same method with a purely local feature (i.e., degree
frequency distribution (DFD) [7]) has an average cross-
vali dated accuracy of 75 percent. Since ACTS only uses struc-
tural features, which are orthogonal to semantic features such
as bytecode-based vertex typing, it is expected that combining
themwould give a greater improvement inmalware detection
accuracy than combining non-orthogonal semantic features.

Moreover, Android is going far beyond the smart-
phones/tablets, e.g., the Android Wear, Android Pay and
Android Auto. Some of the new applications are high level
distributed systems that there are new rules and challenges
for both the programming and the malware detection. In
detail, the new malware detection method should be
deployed on various mobile distributed platforms and get
analysis result swiftly. Since the topological features are
related to the purpose of the software while the semantic

features are highly connected to the programming lan-
guages and platforms, we believe that the method ACTS
introduced in this paper is more adaptive to the new devel-
opment but the dynamic analysis methods need additional
work to follow the trend.

In summary, our contributions are:

� We propose a novel topological signature for Android
apps that fully captures the invocator-invocatee rela-
tionship in an app’s FCG, which is otherwise lost in
a global topological metric such as betweenness
centrality [3], without exponentially inflating the state
space as in n-hop neighborhoodswith n � 3.

� By leveraging recent advances in graph mining, we
make the generation of our proposed topological
signature practically efficient without sacrificing its
robustness.

� With experiments on real malware/benign app
samples, we demonstrate that local topological infor-
mation captured by our method alone can achieve
a high malware detection accuracy, which can be fur-
ther improved by incorporating (orthogonal) seman-
tic features.

In the rest of the paper, after the preliminaries (Section 2),
we present our method (Section 3) and experiment results
on real malware/benign app samples (Section 4). We then
reflect on our method (Section 5) and conclude with a brief
review of related works (Section 6).

2 PRELIMINARIES

2.1 Function Call Graph

Function call graph is a graph model for functions and their
invocation relationship, in which vertices represent functions
and a directed edge from vertex v1 to v2 represents that v1
invokes v2. For an Android app, functions are Java methods,
and their invocation relationship can be statically extracted
from Java bytecode by searching for the invocation-related
opcodes, i.e., invoke-*.

2.2 Graphlets
Pr�zulj et al. first consider a complete set of local graph topol-
ogies with 3, 4, and 5 vertices and name them graphlets1 in
their work on characterizing biological networks [22]. For-
mally, given a graph G, graphlets of G are small, connected,
non-isomorphic, and vertex-induced subgraphs of G.
Although earlier works [22], [23], [24] on graphlets focus
on undirected graphs, we consider directed graphlets to
preserve the inherent directionality of FCGs.

Fig. 1 enumerates all the 13 unique types of (directed)
graphlets v3;i

2 (i ¼ 1; 2; . . . ; 13) with 3 vertices (the
3-graphlets): They are pair-wise non-isomorphic. These
graphlet types do not appear equally likely in an FCG. For
instance, although there are many cases in which a func-
tion invokes two others (v3;5) or two different functions
invoke the same one (v3;6), 3 mutually recursive functions
(v3;13) are rare. Later, we will discuss how we use this

1. Graphlet is also used to refer wavelet decomposition of
graphs [30], which is an unrelated concept to what we use in this work.

2. The unique types of n-graphlets are enumerated as
vn;1;vn;2; . . . ;vn;NðnÞ, with NðnÞ being the number of unique types for
n-graphlets.

GAO ETAL.: ANDROID MALWARE DETECTION VIA GRAPHLET SAMPLING 2755

Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on October 07,2020 at 18:24:12 UTC from IEEE Xplore. Restrictions apply.

observation to improve the performance of our method
(Section 3.3).

For vertices 4, 5, and 6, the number of graphlet types
are 199, 9,364, and 1,530,843, respectively [26]. We focus
on graphlets with less than 6 vertices in this work
because larger graphlet types require extra computations
but provide little value in capturing the structure of
FCG. Fig. 2 illustrates our running example: A 4-graphlet
g (the grey vertices and their induced edges) embedded
in a 6-vertex graph G.

2.3 Graphlet Frequency Distribution (GFD)
Graphlet frequency distribution of a graph G is the prob-
ability distribution of the frequencies of the different
graphlet types in G. For instance, since the number of 3-
graphlets in a (finite) FCG G is finite, we can, in princi-
ple, enumerate all embedded graphlets in G and, for
each such embedded graphlet g, identify g with one of
the 13 graphlet types in Fig. 1. At the end of the enumer-
ation, suppose the count (i.e., the frequency) of graphlet
type v3;i is f3;i (i 2 f1; 2; . . . ; 13g), the frequency distribu-
tion density d3;i at v3;i is f3;i=

P13
i¼1 f3;i. We call the vector

ðd3;1; d3;2; . . . ; d3;13Þ the 3-graphlet frequency distribution (3-
GFD) of G. We can compute n-GFD for any n with the
same procedure, and concatenate several n-GFDs with
different n into a single vector. We can call the
concatenated vector a GFD of G if there is no confusion
on its constituents.

The above procedure only works in principle. In practice,
the fast growing number of apps, the size of real apps’
FCGs, and the combined computation complexity of graph-
let enumeration and identify graphlet types make
the enumeration-and-count procedure impractical to use.
Nevertheless, GFD is a step forward towards our goal: It is
a metrication from the (combinatorial) graphlet space into
the (metric) euclidean space, where we can apply pattern
learning techniques to detect malware. In other words, GFD
preserves the topological information of local neighbor-
hoods in an FCG. Later, after giving a high-level overview
of our method (Section 3.1), we will focus on how to esti-
mate GFD efficiently (Section 3.2).

2.4 Minimum DFS Code
Minimum depth-first search (DFS) code is proposed by Yan
and Han to identify isomorphic graphs for frequent sub-
graph mining algorithm gSpan [34].

Essentially, for a graph G, by defining an encoding
(i.e., the DFS code) for one3 DFS traversal of G, and a linear
order (i.e., the DFS lexicogrraphic order) for all possible

DFS codes of G, they prove that the minimum (under the
DFS lexicographic order) DFS code CðGÞ

CðGÞ ¼ minfCðwÞjall DFS traversals w of Gg;
is a unique encoding under isomorphism: Two graphs G1 and
G2 are isomophic if and only if CðG1Þ ¼ CðG2Þ.

2.5 Metropolis-Hastings (M-H) Algorithm
Markov chain Monte Carlo (MCMC) [10] is a class of
algorithms for sampling from a probability distribution.
Given an intended sampling distribution pðxÞ over a sam-
ple space X, the idea behind general Markov chain Monte
Carlo methods (in which the M-H algorithm is a specific
method) is to construct a Markov chain over X whose sta-
tionary distribution equals to pðxÞ: After the Markov chain
mixes (i.e., reaches its stationary distribution and, hence,
“forgets” where it begins), the subsequently visited states
of the chain can be used as samples from the intended
distribution P ðxÞ.

Metropolis-Hastings (M-H) algorithm [20] is a specific
MCMC method that we use for estimating GFD (Section 3.2).
In theM-H algorithm, the transition between two consecutive
states x and x0 in the chain consists of two stages: proposals
and acceptance/rejection. Correspondingly, there is a pro-
posal distribution qðx0jxÞ (the probability of proposing x0 as the
next state given the current state x) and an acceptance distri-
bution aðx0jxÞ ¼ minð1; Aðx0jxÞÞ (the probability of accepting
x0 as the next state given the current state x), inwhich

Aðx0jxÞ ¼ pðx0Þqðxjx0Þ
pðxÞqðx0jxÞ : (1)

Intuitively, for each iteration of the sampling process, we
first randomly pick x0 with a probability of qðx0jxÞ, and then
either accept x0 (by sampling x0) with a probability of aðx0jxÞ
or reject x0 (by sampling x again) with a probability of
1� aðx0jxÞ.

3 METHOD

In this section, after a brief overview of our method
(Section 3.1), we zoom in on two technical points: Efficient
GFD estimation (Section 3.2) and FCG-specific GFD dimen-
sion reduction heuristics (Section 3.3) that distinguish our
method.

3.1 Overview
Given an Android app’s Android PacKage (APK) binary
package, we:

� extract an FCG from the APK,
� estimate the GFD of the FCG (Section 3.2), and
� project the estimated GFD to a lower dimensional

space to reduce the GFD’s dimensions (Section 3.3).
The projected GFD, which is a vector, is a signature of

the app. To stress that this signature preserves detailed

Fig. 1. The 13 unique 3-graphlet types v3;i (i ¼ 1; 2; . . . ; 13).

Fig. 2. Our running example: A 4-graphlet g (the gray vertices and their
induced edges) embedded in a 6-vertex graph G.

3. There may be multiple DFS traversals for a single G.

2756 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 12, DECEMBER 2019

Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on October 07,2020 at 18:24:12 UTC from IEEE Xplore. Restrictions apply.

topological information on an app’s FCG, we call it the topo-
logical signature (TS) of the app.

Given a pool of both malware and benign app samples,
we train a classifier on their TSs to detect malware: If the TS
of an app is classified as a malware, the app is flagged as
malware.

3.2 Efficient GFD Estimation
Suppose we have a uniform sampler of the FCG, we can
approximate the whole FCG’s GFD with our samples’ GFD.
The more samples we take, the closer the approximation is.
Given the large sample space and the (relatively small)
number of bins (i.e., unique graphlet types) for n-graphlets
with n < 6, we only need to sample a tiny fraction of the
sample space to get a close approximation.

This apparently solve the GFD estimation problem.
However, the real problem is that we need to uniformly sam-
ple graphlets from the FCG without enumerating the sample
space. Fortunately, two recent advances on graph mining,
GRAFT [23] and GUISE [24], show that GFD can be esti-
mated without enumerating all graphlets. Inspired by these
works, we use MCMC to sample the directed FCG.

3.2.1 Sample Space and Intended Distribution

Since our goal is to uniformly sample from all the embed-
ded graphlets in the FCG:

� The sample space X consists of all the embedded
graphlets in the FCG.

� The intended distribution pðxÞ over X is the uniform
distributions, i.e., pðxÞ ¼ pðx0Þ for any x; x0 2 X.

Suppose we have just sampled graphlet g in the sampling
process, the M-H algorithm (Section 2.5) says that, if we pro-
pose to sample graphlet g0 next with a probability of qðg0jgÞ,
an acceptance probability of aðg0jgÞ ¼ minð1; Aðg0jgÞÞ (in
which Aðg0jgÞ is defined by Equation (1)) will eventually
lead to a sampling process that have the desired sampling
distribution pðxÞ.

3.2.2 FCG-Induced Graphlet Graph and Graphlet

Neighboring Relationship

To define the proposal distribution qðx0jxÞ, we consider the
FCG-induced graphlet graph GG of the FCG G. The FCG-
induced graphlet graph GG is an undirected graph with verti-
ces being all the embedded graphlets in the FCG, and edges
defined by the graphlet neighboring relationship between the
vertices. The graphlet neighboring relationship is a symmet-
ric relationship between two graphlet embeddings g1 and g2
in the FCG: g1 and g2 are graphlet neighbors if and only if
they differ by share all but one vertex. In particular, self-
neighboring is excluded by this definition because there is no
vertex difference, which is required by the definition. Since
graphlets onG and vertices on GG have a one-to-one map, we
identify a graphlet g on G with the vertex on GG that it maps
to, and also denote that vertex with g if there is no confusion
in the context.

For example, in Fig. 2, g’s neighbors on GG are4 all the
3-graphlets (e.g., fv2; v3; v4g, fv3; v4; v5g, etc.), 4-graphlets

(e.g., fv1; v2; v3; v4g, fv0; v2; v4; v5g, etc.), and 5-graphlets
(fv1; v2; v3; v4; v5g and fv0; v2; v3; v4; v5g) that share all but
one vertex with it. Conversely, 1) fv1; v2; v3g is not a neigh-
bor of g because it does not contain both v4 and v5, which
are in g; 2) fv0; v1; v2; v3g is not a neighbor of g because it
does not contain g’s vertices v4 and v5 (and g does not con-
tain its vertices v0 and v1); 3) fv0; v1; . . . ; v5g is not a neighbor
of g because g does not contain its vertices v0 and v1.

The significance of the graphlet neighboring relationship
on GG is that it can be efficiently generated by local information
on the FCG G without enumerating the whole G. Specifically,
given an embedded graphlet g of G, the neighbors of g on GG
can be generated by removing, changing, or adding exactly
one vertex in g. Hence, we can efficiently compute the degree
dg of g in GG by generating and counting g’s neighbors.

3.2.3 Proposal and Acceptance Distributions

Let dðgÞ and NðgÞ be graphlet g’s degree and neighbors in
GG, respectively. Suppose the last graphlet we have sampled
is g, our proposal strategy qðg0jgÞ is to uniformly sample one
of its neighbors in GG, i.e.,

qðg0jgÞ ¼
1
dg

if g0 2 NðgÞ,
0 otherwise.

(
(2)

Since dg can be efficiently computed without enumerating
the graph (see above), qðg0jgÞ can also be efficiently com-
puted since it only requires computing dg.

By Equations (1) and (2), the resulting acceptance strat-
egy aðg0jgÞ is

aðg0jgÞ ¼ min 1;
dg
dg0

� �
if g0 2 NðgÞ,

0 otherwise.

(
(3)

By Equations (2) and (3), the probability sðg0jgÞ of sam-
pling g0 next given the current sample g is

sðg0jgÞ ¼
min 1

dg
; 1
dg0

� �
g0 2 NðgÞ,

1�P
h2NðgÞmin 1

dg
; 1
dh

� �
g0 ¼ g,

0 otherwise.

8>><
>>: (4)

The intuition behind the sampling strategy in Equa-
tion (4) can be understood in the following two cases.

Case 1. If g is a graphlet that has the highest degree
among its neighbors in GG, i.e., dg � dg0 for any g0 2 NðgÞ,
then minð1=dg; 1=dg0 Þ ¼ 1=dg and, hence, by Equation (4),

sðgjgÞ ¼ 1� dgð 1dgÞ ¼ 1� 1 ¼ 0, i.e., the next sample will not

be g but one of its neighbors.
Case 2. If g is a graphlet with a relatively low degree among

its neighbors in GG, sðg0jgÞ in Equation (4) will be greater than
0. The greater the degree differences are, the greater sðg0jgÞ
will be. In an extreme case in which g has a single neighbor g0

with a degree of 100 (i.e., dg ¼ 1 and dg0 ¼ 100), sðg0jgÞ ¼ 0:01
and sðgjgÞ ¼ 0:99: If the current sample is g, 99 out of
100 times, the next sample will still be g.

In other words, the sampling process (i.e., the consecutive
states of the Markov chain) is more eager to move away from
the more popular graphlets (i.e., the ones with higher degrees
in GG) and to stay at the less popular ones: The former has a
better chance than the latter of being revisited later. This

4. Given that graphlets are vertex-induced subgraphs, we use a ver-
tex set to represent the (unique) embedded graphlet having those verti-
ces here.

GAO ETAL.: ANDROID MALWARE DETECTION VIA GRAPHLET SAMPLING 2757

Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on October 07,2020 at 18:24:12 UTC from IEEE Xplore. Restrictions apply.

results in a fair (i.e., uniform) sampling of all the embedded
graphlets in the FCGG.

3.2.4 MinimumDFSCode for Directed, UnlabeledGraphs

An important step of our method is to differentiate the
graphlets in sampling. A naive approach is to apply directed
graph isomorphic recognition algorithms. Although our sap-
ling space is limited to graphlets with no more than 5 nodes,
naively recognizing isomorphism graphs is still a complex
work. Hence, we introduce the minimumDFS code, which is
proposed by Yan and Han (Section 2.4), to identify subgraph
isomorphism on an undirected and labeled graph.

To handle the FCG’s inherent directness, we extend the
definition of DFS lexicographic order to include an encod-
ing of the edge directionality. Specifically, suppose the
ordered edge sequence in the DFS code CðGT Þ for the graph
traversal GT is e1; e2; . . . ; ejEj (with the encoding of edge ei
being ðvi;1; vi;2Þ), we attach an jEj-tuple ðd1; d2; . . . ; djEjÞ to
the end of CðGT Þ. di encodes the directionality of ei

di ¼
0 the direction is from vi;1 to vi;2,
1 the direction is from vi;2 to vi;1,
2 ei is a bi-directional edge.:

8<
:

This extension captures the directionality of edges and fits
naturally into the minimum DFS code generation algo-
rithm [34]. Without inflating our symbols, we use CðGÞ
henceforth to represent our extended minimum DFS code.

For example, in Fig. 2, the minimum DFS code for the
4-graphlet embedding g is

CðgÞ ¼ ð0; 1Þð1; 2Þð2; 0Þð2; 3Þjð0; 0; 0; 1Þ;

in which vertices v2, v3, v4, and v5 are encoded as 0, 1, 2, and
3, respectively. The 4-tuple at the end encodes the directions
of the edges ðv2; v3Þ, ðv3; v4Þ, ðv4; v2Þ, and ðv4; v5Þ: v2 ! v3,
v3 ! v4, v4 ! v2, and v4 v5. Any 4-graphlet g0 that is iso-
morphic to g will have the same minimum DFS code,
i.e., Cðg0Þ ¼ CðgÞ.

In the naive subgraph isomorphic recognition algo-
rithm, the target graph should be compared with each
candidate graphlet. For instance, a 5-node graph has
9,364 possible matching. Advanced subgraph isomorphic
recognition algorithms, e.g., Frequent Subgraph Discov-
ery (FSD) and minimum DFS code, pruned the search
with labeling the subgraphs [14], [34]. Moreover, the
minimum DFS code generation algorithm applies the
DFS search to efficient mine frequent connected sub-
graphs. This algorithm has 6-150 speed-up in compari-
son with FSD algorithm [34].

3.2.5 GFD Estimation Algorithm

Finally, we estimate the GFD for the FCG G from t samples
by evaluating ESTIMATE-GFDðG; tÞ in Algorithm 1. In our
experiment, we evaluate multiple t and choose 100,000 for
having both low variance in the sampling result and accept-
able efficiency. Note that, given the average size of an FCG
G (thousands of vertices) and, hence, the sample space GG
(for a 1,000-vertex G, GG has a worst-case size of Oð1; 0003Þ),
100,000 iterations are quite small. Indeed, for the largest app
in our dataset (the Facebook app, with 47,539 vertices and
77,900 edges), ESTIMATE-GFDðG;T Þ for T ¼ 100; 000 only

takes only about 34 seconds on our desktop workstation
with high convergence across multiple runs.

Algorithm 1. Estimate GFD for the FCGG from t Samples

1: " C: all the distinct n-graphlet types for n 2 f3; 4; 5g
2: " fc: frequency counter for graphlet type c 2 C
3: " dc: frequency density estimation for graphlet type c 2 C
Input: G: the FCG; t: number of iterations
4: function ESTIMATE-GFDðG; T Þ
5: g a random (initial) graphlet" bootstrap the sampling

process
6: NEXT-SAMPLEðG; g; T Þ " obtain the vector ðfcjc 2 CÞ
7: for c 2 C do " for each graphlet type c 2 C
8: dc fc=

P
c2C fc " estimate its graphlet density

9: end for
10: return ðdcjc 2 CÞ" ðdcjc 2 CÞ is a vector ordered by C
11: end function
Input: G: the FCG; g: current graphlet sample; k: remaining
iterations
12: procedureNEXT-SAMPLEðG; g; kÞ
13: NðgÞ g0s neighbors in GG " Section 3.2.2
14: choose a g0 2 NðgÞ with an equal probability of 1=dg "

Equation (2)
15: a a number uniformly sampled from ½0; 1�
16: if a � minð1; dg=dg0 Þ then " accepting g0

17: g g0

18: else " rejecting g0

19: end if
20: c CðgÞ " identify (the new) g’s type
21: fc fc þ 1 " increase g’s count
22: if k > 0 then " if there are remaining iterations
23: NEXT-SAMPLE ðG; g; k� 1Þ " we continue the sampling

process
24: end if
25: end procedure

3.3 FCG-Specific GFD Dimension Reduction
Heuristics

The curse of dimensionality [12] plagues many machine
learning tasks. Theoretically, by confining the n-graphlets
we sampled to n 2 f3; 4; 5g, the GFD vectors we obtain from
Algorithm 1 are of 9,576 (13þ 199þ 9; 364; Section 2.2)
dimensions. Reducing the dimensions of these vectors is
desirable.

Fortunately, as briefly discussed in Section 2.2, not all
graphlet types are equally likely to appear in a real FCG.
Figs. 3 and 4 show all 3-graphlet and 4-graphlet types
(5-graphlet types are omitted for space constraints) that
have more a greater-than-2 percent frequency density in the
GFD of at least one of the (more than 1,400) apps (including
both malware and benign apps) in our experiment:
There are 5 3-graphlet types, 20 4-graphlet types, and
71 5-graphlet types, respectively.

Fig. 3. The five 3-graphlet types that have a greater-than-2 percent fre-
quency density in the GFD of at least one app in our experiment, sorted
by their average frequency density across all malware/benign app sam-
ples in our experiment.

2758 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 12, DECEMBER 2019

Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on October 07,2020 at 18:24:12 UTC from IEEE Xplore. Restrictions apply.

Note that, as we discuss in Section 2.2 and is verified
here, graphlet types v3;5 (outgoing invocations) and v3;6

(incoming invocations) rank among the most frequent 3-
graphlet types, while the mutually recursive type (v3;13) is
not. Moreover, except for a few cases of mutual recursion,
loops among a few functions of are rare. This suggests that:
1) either inter-function loops have a long chain of invoca-
tions, 2) or most functions have a clear invocator-invocatee
relationship that is not reciprocal.

These observations suggest that we can significantly cut
down the dimensions of GFDs by projecting the GFD vec-
tors onto the most frequent dimensions. Indeed, this is what
we do in our method after obtaining the full-spectrum (i.e.,
9,576-dimensional) GFD estimation.

4 EXPERIMENT RESULTS

4.1 Datasets
In our experiment, we use the benign app samples from
PlayDrone [32] and use the malware samples from the
Android Malware Genome Project (AMGP) [39].

For the benign app portion of our datasets, we down-
load the dataset of PlayDrone. There are total 49,000
benign samples in 9 different archives. To test the scal-
ability and robust of our algorithm, we randomly and
repeatedly choose sets from the PlayDrone and each set
has thousands of benign samples. We also check the
package name, the version code and the MD5 message
of each sample to prevent the duplicate in it. For the
malware portion of our datasets, the AMGP lists 1,249
malware samples of 49 families.

4.2 Procedure
We first use Androguard [15], an Android app reverse engi-
neering toolkit, to extract FCGs from the APK samples. Spe-
cifically, we use the androgexf.py script to extract a GEXF5-
format file that encodes the Java methods and their invoca-
tion relations in the APK.

We implement ourGFDestimation algorithm (Algorithm1)
to generate a GFD vector for all n-graphlet types for
n 2 f3; 4; 5g. The majority of dimensions have a frequency of
0; hence, we use the FCG-specific GFD dimension reduction
heuristics (Section 3.3) to reduce these 9,576-dimensional
vectors to 96-dimensional ones (details are shown in

Section 4.3.3). These 96-dimensional vectors are the topologi-
cal signatures of their corresponding apps.

We then use the LIBSVM [4] support vector machine
(SVM) library for classification; the details are mentioned
below along with corresponding results.

4.3 Results
To understand how the local-topology-preservation property
of GFD helps in enhancing malware detection performance,
we compare our method with another method in which both
the (preceding) FCG extraction phase and (subsequent) learn-
ing phase are the same. The only difference is the feature we
extract from FCG. Specifically, we use the degree frequency
distribution for comparison. In DFD, vertices with the same
degree frequencies are binned together and counted. DFD is
the probability distributions of element counts over these
bins. In other words, the only difference between the two
methods is whether local topology information of FCG is
used in the subsequent learning phase: Our GFD-based
method uses this information, while the DFD-based method
does not.

For reasons that will be explained shortly, in this experi-
ment, we randomly and repeatedly pick 1,200 samples from
the benign dataset to compare with the 1,200 malware
samples. In each comparison, we use the 10-fold cross verifi-
cation, which means that each time 120 benign samples and
120 malware samples are randomly chosen as test set, other
samples will be feed as training set and the result shows the
overall average accuracy. Then we compare malware detec-
tion performance of SVMs with GFD-based signatures
(SVM-GFD) and SVMs with DFD-based signatures (SVM-
DFD) using all 4 built-in SVM kernel functions in LIBSVM:

RBF (radial basis function: egju�vj
2
), linear (u0 � v), polynomial

(ðgu0 � vÞ3), and sigmoid (tanhðgu0 � vÞ), in which u and v are
feature vectors, g ¼ 1=N , and N is the feature vector dimen-
sion. Fig. 5 shows the accuracy (the samples that are
correctly labeled by the SVMs) comparison and Table 1
shows the detailed false positives/negatives (the samples
that are incorrectly labeled by the SVMs). We do observe
similar results on the repeated experiments but we just
choose to report one due to the space constraint.

4.3.1 Malware Detection Performance

The reason we use a 1:1 ratio between malware and benign
app dataset is that a skewed dataset may give misleading
performance results. Later in this part we will also present

Fig. 4. The 20 4-graphlet types that have a greater-than-2 percent frequency density in the GFD of at least one app in our experiment, sorted by their
average frequency density across all malware/benign app samples in our experiment.

5. Graph Exchange XML Format (GEXF); http://gexf.net/format/.

GAO ETAL.: ANDROID MALWARE DETECTION VIA GRAPHLET SAMPLING 2759

Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on October 07,2020 at 18:24:12 UTC from IEEE Xplore. Restrictions apply.

http://gexf.net/format/

the influence of sample bias. In both Fig. 5 and Table 1, the
performance of SVM-GFD and SVM-DFD appear to be
consistent across learning kernels. The high accuracy of the
two algorithms implies that both of them could successfully
capture topological features, and the features are helpful to
Android malware detection.

Comparing these two algorithms, SVM-GFD always give
better results (by average 6 percent margin over the SVM-
DFD algorithm, to over 80 percent accuracy). A recent
study [2] on commercial anti-virus scanners’ (AntiVir, AVG,
BitDefender, ClamAV, ESET, F-Secure, Kaspersky, McAfee,
Panda, Sophos) performance on the AMGP dataset shows
that, except for two outliers (23.68 and 1.12 percent), the
commercial AV scanners have accuracy ranging from 84.23 to
98.90 percent. SVM-GFD attains a comparable accuracy
of 87.85 percent on the full AMGP dataset using only the
structural featureswithout any semantic augmentation.

Fig. 5 suggests that RBF kernel could give a better result
than other three kernels both for SVM-GFD and SVM-DFD.
SVM-GFD could perform a 78 percent or higher results on
different kernels, while SVM-DFD shows 70 percent accu-
racy when choosing polynomial or sigmoid kernel. So the
SVM-GFD seems more robust than SVM-DFD. Table 1
shows that they have different performance among false
positives (FP) and false negatives (FN). Because the dataset
is 1:1 ratio, FP and FN achieving a nearly 1:1 ratio means
the SVM could successfully divide the hyperplane. From
Table 1 we can see that these two SVM methods tend to
give high accuracy under the specified circumstances. And
SVM-GFD often have a same FP or FN percentage as
SVM-DFD while the other is much better.

4.3.2 Malware Family Labeling Accuracy

To further understand the significance of capturing local
topology in FCG for malware detection, we compare our
SVM-GFD together with the SVM-DFD in their malware
family labeling accuracy on the 8 malware families that have
over 40 samples in the AMGP dataset. Specifically, we take
the family labels on the malware samples in the AMGP data-
set as the ground truth, and compare the two methods’ accu-
racy in assigning the correct family labels for the test data
sets. Here we use 3-fold cross verification instead of the 10-

fold one because some families, e.g., GoldDream with 47
samples, do not have enough samples to be divided into 10
folds. And we use the same number of samples, which is the
size of the smaller family, from two families in comparison.
We also compare each family with a dynamic benign dataset,
which is viewed as another kind of ‘malware’ family. There-
fore, the last column result shows the accuracy of malware
detection in one certain family.

Table 2 shows the pair-wise (one versus one) malware
family labeling accuracy of SVM-GFD versus SVM-DFD
with the RBF kernel, since both methods get the best results
with the RBF kernel (Section 4.3.1). SVM-GFD outperforms
SVM-DFD in all pairs of malware families by a margin from
1.93 percent (DKF4/DroidKungFu4 versus KM/KMin) to
27.17 percent (BB/BaseBridge versus DDL/DroidDream-
Light). The malware and benign software classification
result in each family also shows SVM-GFD could achieve
3.57 percent (P/Pjapps versus Benign) to 23.31 percent (BB/
BaseBridge versus Benign) higher performance. Note again,
the additional local topological information on FCG
captured by GFD, alone, takes the credit for this improve-
ment in accuracy.

When an unknown sample, which does not belong to
known families, appears, we do experiment to test the
detection accuracy to examine if we need to re-train the
model. In this experiment, we manually eliminate some
malware families from the training dataset and use them as
the test dataset. The detection accuracy is shown in Table 3.
The results show that even if the sample belongs to an
unknown family, our SVM-GFD model is still available to
detect the malware with probability 69 percent and above.

Also, another experiment shows that if we re-train the
SVM-GFD model with samples in that family, the model
has an accuracy of 100 percent to detect the malware. By
comparison, the detection accuracy is about 75 percent in
classifying malware within one family with benign soft-
ware, which is shown in the last two columns of Table 2.
The improving of detection accuracy implies that malware
from other families also contribute to the classification. This
is also the reason of the robustness of our method when the
family is unknown to the model.

4.3.3 Performance against Sampling Space Size

In Section 3.3, we reduce the graphlet space dimensions
from 9,576 to 96, because of the reasons: the reduced fea-
tures have low frequency density in GFD space, and the
space after reduction can give accurate malware detection.
For the first reason, we analyze the graphlet space of more
than 1,400 Android apps. The 96 graphlets are chosen
because they have at least 2 percent frequency density in at

Fig. 5. Malware detection accuracy of SVM-GFD (SVMs with GFD-
based signature; dark) and SVM-DFD (SVMs with DFD-based signa-
ture; grey) using C-SVC (C-support vector classification) SVMs (support
vector machines) with different kernels: RBF (radial basis function), lin-
ear, polynomial, and sigmoid.

TABLE 1
Malware Detection False Positives (FPs) and False Negatives
(FNs): SVM-GFD versus SVM-DFD with Different Kernels

RBF linear

FP FN FP FN
GFD 11.53% 12.78% 19.30% 19.55%
DFD 13.03% 27.07% 17.54% 27.82%

polynomial sigmoid

FP FN FP FN
GFD 20.80% 20.55% 22.01% 20.55%
DFD 21.30% 33.08% 26.57% 32.08%

2760 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 12, DECEMBER 2019

Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on October 07,2020 at 18:24:12 UTC from IEEE Xplore. Restrictions apply.

least one app. For the second reason, we analyze the detec-
tion accuracy with different sampling space sizes based on
a toy dataset with 200 apps.

Fig. 6 shows the analysis result. We can find that when
the graphlet space is small, i.e., with less than 5 dimensions,
the detection accuracy is not better than a naive strategy
which classifies all apps into benign (or malicious). How-
ever, the graphlet spaces with more than 60 dimensions
have stable and effective performance in malware detection.
This experiment encourages us to apply GFD dimension
reduction heuristics.

4.3.4 Performance against Graph Size Bias

There is a huge difference of the sizes between the benign
apps and malicious apps. While common benign APK files
have the size of 1 to 10MB, themaliciousAPKfiles are usually
hundreds of KB. Most of the malicious applications only care
about their malicious functions, whose size are small com-
pared with the source code of the benign applications.
Although our classification is based on FCGs, the size differ-
ence in Android APKs will result in the size difference in
FCGs. There are severalmetrics tomeasure the size of a graph,
e.g., the number of nodes and the number of edges. Fig. 7
shows the distribution of the FCG sizes. The result demon-
strates that the malicious apps always have smaller FCGs
than the benign apps. The average number of nodes is 1,348
in the malicious apps but it is 10,046 in the benign apps. The
numbers of edges are 1,919 and 14,180 of the malicious apps
and benign apps, respectively. Considering the average case,
the benign apps have FCGs about 7 times larger as the FCGs
of themalicious apps.

Thus, one may argue that the difference in FCG sizes,
instead of the structure difference between the malicious
apps and benign apps, leads to the high performance of the
detection. Fig. 8 shows the detection accuracies when the
malicious apps and benign apps have different sizes of FCGs.

We take threemetrics tomeasure the size of a graph: the node
number, the edge number, and the max degree in the graph.
The scale of grey shows the accuracy: white is 100 percent
accurate and black is 0 percent accurate. In the result, most of
the results achieve 80 percent accurate or higher. In Figs. 8a
and 8b, there is no significant trend that the accuracy of differ-
ent sizes of graph is higher than the accuracy of similar sizes
of graphs. For example, the accuracy of classifying 100 nodes
malicious FCGs with 900 nodes benign FCGs is not higher
than the accuracy of classifying 900 nodes malicious FCGs
with 900 nodes benign FCGs.

However, in Fig. 8c, we can find that the accuracies on
the diagonal are always smaller than the accuracies on the
two conners. It means that the differences in the max degree
of the graph significantly impact our detection results.
Considering that the detection is based on the GFD, we find
that the graphlet frequency distribution is correlated with
the max degree in the graph. Combining the results in
Figs. 8a and 8b, we can conclude that our detection accu-
racy, i.e., the FCG’s GFD, is not directly linked with the
graph size, but it is related with the density of the graph.

4.3.5 Performance against Sample Bias

In Section 4.3.1, we mention the peril of sample bias: If the
ratio between positive and negative samples (i.e., benign
app and malware samples) is skewed, even a naive strategy
can give a misleadingly high accuracy without actually
identifying malware from benign apps. In real-world

TABLE 3
Classification Result of Unknown Family

Family Classified as malware Classified as benign software

DKF3 69% 31%
AB 86% 14%
DKF4 74% 26%
DDL 76% 24%

Fig. 6. Accuracy against different sampling size.

TABLE 2
Pair-Wise Malware Family Label Accuracy (in Percentage) of SVM-GFD (GFD) versus SVM-DFD (DFD) with the RBF Kernel of the

Eight Malware Families that have over 40 Samples in the AMGP Dataset: DroidKungFu3 (DKF3; 303 Samples) AnserverBot
(AB; 185 Samples), BaseBridge (BB; 118 Samples), DroidKungFu4 (DKF4; 96 Samples), Pjapps (P; 56 Samples), KMin (KM;

52 Samples), GoldDream (GD; 47 Samples), and DroidDreamLight (DDL; 46 Samples)

DKF3 AB BB DKF4 P KM GD DDL Benign

GFD DFD GFD DFD GFD DFD GFD DFD GFD DFD GFD DFD GFD DFD GFD DFD GFD DFD

DKF3 - - 84.86 77.57 81.36 64.83 75.94 71.08 84.38 69.27 78.85 65.38 78.72 67.02 84.78 69.57 83.49 79.70
AB - - - - 70.34 54.24 92.18 71.35 83.04 57.14 90.38 82.69 86.87 58.59 92.39 71.74 90.27 85.95
BB - - - - - - 76.69 58.05 82.14 76.79 83.65 60.58 63.64 51.52 89.13 61.96 79.24 55.93
DFK4 - - - - - - - - 75.89 55.36 78.85 76.92 68.69 65.66 69.56 63.04 73.96 64.06
P - - - - - - - - - - 88.46 76.92 69.15 56.38 75 57.61 79.46 75.89
KM - - - - - - - - - - - - 91.49 70.2 90.22 68.48 90.38 77.88
GD - - - - - - - - - - - - - - 72.83 60.87 75.53 71.28
DDL - - - - - - - - - - - - - - - - 77.17 71.74
Benign - - - - - - - - - - - - - - - - - -

Since this matrix is symmetric, we only show the upper half of it.

GAO ETAL.: ANDROID MALWARE DETECTION VIA GRAPHLET SAMPLING 2761

Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on October 07,2020 at 18:24:12 UTC from IEEE Xplore. Restrictions apply.

malware detection, positive/negative samples rarely comes
in evenly: It is highly likely we have to work with a skewed
dataset.

Therefore, we study how SVM-GFD responds to sam-
ple bias. In order to avoid the influence of the dataset’s
size, we first fix the total number of benign and mali-
cious softwares to 1,000. Then we perturb the ratio
between malware and benign app samples, and study
the accuracy response of SVM-GFD/SVM-DFD with the
linear kernel. Fig. 9 shows the results and indicates that
SVM-GFD gets higher accuracy among all kinds of mal-
ware and benign software combination. SVM-GFD has a
variance of 4.1 while SVM-DFD has a variance of 11.4.
We conclude that SVM-GFD is more robust than SVM-
DFD against sample bias, especially when malware or
benign software accounts a small proportion. When the
ration between malware and benign software is 2:8, as
mentioned above it is a common real-world situation,
SVM-GFD outperforms 7 percent accuracy but SVM-DFD
is just the same as the naive strategy.

4.3.6 Recall with Keeping High Precision

In practical cases, not only is the sample dataset skewed
(large number of benign samples and small number of mali-
cious samples), but also the malware detection method is

expected to have high precision and recall. In this section,
we fix precision to a high value and examine recall of SVM-
GFD/SVM-DFD results. These results show the ability of
the proposed methods to reduce false negatives with little
precision loss. Moreover, in order to eliminate the perfor-
mance gain of skewed dataset and simulate real cases, we

Fig. 7. FCG sizes of benign apps and malicious apps.

Fig. 8. Accuracies of graphs with different sizes.

2762 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 12, DECEMBER 2019

Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on October 07,2020 at 18:24:12 UTC from IEEE Xplore. Restrictions apply.

choose a biased training dataset with 90 percent of benign
samples, but a unbiased test dataset with 50 percent
malware.

In this experiment, we fix the precision to 80, 90, and
100 percent and get the recall of the two methods. Each
number in Table 4 shows an average recall of ten different
experiments. Each experiment uses 10 percent disjoint data-
set as the test data, which is similar to 10-fold cross verifica-
tion. SVM-GFD achieves higher recall value. When the
detection is required to have 100 percent precision, SVM-
GFD can get 38 percent recall with the RBF kernel. By com-
parison, SVM-DFD only gets 6 percent recall when the
detection requires 100 percent precision. It means that
SVM-GFD achieves relatively high true positives without
false positives compared to SVM-DFD method.

4.3.7 Most Frequent Graphlets

To understand why malware detection accuracy improves
only by replacing DFD with GFD, we study the most fre-
quent graphlets that appear in benign apps and in malware.
Figs. 10 and 11 show the top 5 most frequent graphlet types
for all benign app and malware samples in our datasets,
respectively. “Most frequent” in this case means that these
graphlet types have the highest average GFD densities in
that category (benign app or malware).

It is interesting to note that, in addition to different
average density values, the types of the most frequent
graphlets are different. For example, while v3;5 (outgoing
invocations; Fig. 1) ranks the first and w3;6 (incoming
invocations) ranks the third for malware, v3;5 ranks the
third and v3;6 ranks the first for benign apps. In both

cases, these two graphlet types have a graphlet fre-
quency density gap of 0.1 or more between them. And it
also happens when a function invokes/is invoked by 3
or more other functions. This suggests that incoming
invocations to a same function is more frequent than
outgoing invocations from a single function in benign
apps, while the reverse is true for malware. The mecha-
nism behind this calls for further research.

4.3.8 Robustness with SVM Parameters

When the two methods are used to detect malware in new
datasets, the SVM may not be well-trained. It is important
for the SVM to have the robustness. In this part, e compare
the GFD and DFD methods with various SVM parameters.
Here we use the RBF kernel, which has the highest perfor-
mance in classification, as the example. The RBF kernel has
two parameters, the cost C and the Gamma g. The cost takes
a trade-off between the misclassification rate and the sim-
plicity of the detection surface [6]. Lower the cost, simpler
the decision surface, but higher the misclassification rate
with the training dataset. The g is the one in egju�vj

2
. g

changes the influence of a single example, which is chosen
to be the support vector. Higher the g, higher the influence
of the example.

Fig. 12 shows the accuracy results of the two methods.
Similarly, the scale of grey shows the accuracy: white is 100
percent accurate and black is 0 percent accurate. The accura-
cies of the GFD results are all above 70 percent, while some
DFD results are only 53 percent accurate.

We also evaluate the F1-score of the two methods, which
is the average of the recall and the precision

precision ¼ TP

TP þ FP

recall ¼ TP

TP þ FN

F1 ¼ 2 � precision � recall
precisionþ recall

¼ 2TP

2TP þ FP þ FN
:

(5)

Fig. 9. Accuracy response to different malware/benign-app ratios: SVM-
GFD (full line) versus SVM-DFD (dotted line) versus the naive strategy.
Percentage on the x axis is the ratio of malware over benign apps in the
dataset; y axis is the malware detection accuracy.

TABLE 4
Recall with Keeping High Precision

RBF linear

fixed precision 80% 90% 100% 80% 90% 100%
GFD recall 62% 42% 38% 28% 0% 0%
DFD recall 0% 0% 0% 0% 0% 0%

polynomial sigmoid

fixed precision 80% 90% 100% 80% 90% 100%
GFD recall 80% 6% 6% 48% 24% 6%
DFD recall 8% 6% 6% 4% 4% 4%

Fig. 10. The top five most frequent graphlet types for benign apps, i.e.,
the ones that have the highest average graphlet frequency densities
across all benign apps.

Fig. 11. The top five most frequent graphlet types for malware, i.e., the
ones that have the highest average graphlet frequency densities across
all malware.

GAO ETAL.: ANDROID MALWARE DETECTION VIA GRAPHLET SAMPLING 2763

Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on October 07,2020 at 18:24:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 13 show the F1-scores of the two methods. The
F1-scores of the GFD results are all above 0.65, while the
DFD results have 0.16 F1-scores when the cost and
gamma are not suitable. We find that when cost and
gamma are small, the false positive rate of the DFD
results is high. The DFD method lacks enough robustness
to classify the malicious applications. When the SVM is
not well-trained for the test dataset, the DFD method has
high possibility to raise alarms to benign applications. On
the contrary, our GFD method has enough robustness to
new datasets.

4.3.9 Combination with Semantic Analysis Tool

Since ACTS uses structural features, which are orthogonal
to semantic features, combining ACTS with semantic analy-
sis tools is expected to give a great improvement in malware
detection accuracy. In this experiment, we combine our
method with MaMaDroid, a state-of-the-art malware detec-
tion method using semantic features [18].

Specifically, MaMaDroid abstracts each Android function
into package or family. For instance, the function com.beyon-
dar.world:getInstance has the family com and the package
com.beyondar. Then MaMaDroid embeds a Markov Chain to
model the sequence of these functions. Because MaMaDroid
mainly focus on the semantic features, this algorithm is suit-
able to connect with our structural analysis tool. In this
experiment, we inject the GFD frequency distribution as
additional features to show if the combination tool can get
better detection performance. The result is shown in Fig. 14.
When directly applying MaMaDroid, the area under the
Receiver Operating Characteristic (ROC) curve is 0.95. If the
two analysis tools are combined together, the area under
ROC curve is 0.99. It proves that our method is an enhance-
ment to existing semantic analysis tools.

4.3.10 GFD Estimation Efficiency

Fig. 15 shows the feature extraction time of different meth-
ods among different sizes of FCGs, in our experiment on

Fig. 12. Accuracies with different SVM parameters. Fig. 13. F1-scores with different SVM parameters.

2764 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 12, DECEMBER 2019

Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on October 07,2020 at 18:24:12 UTC from IEEE Xplore. Restrictions apply.

a desktop workstation (8-core Intel Core i7-3820 CPU at
3.60 GHz with 12 GB RAM) with 100,000 sampling itera-
tions (at which point, the GFD estimation has already
converged). Because GFD-SVM method and MaMaDroid
apply the MCMC algorithm to approximate the true distri-
bution of GFD or FCG connection, these two methods have
consistency in runtime with different sizes of FCGs. On the
contrary, DFD-SVM method needs to capture the degree
distribution, which is a global feature and not suitable to
MCMC sampling. While MaMaDroid focuses on the func-
tion call relationships themselves, our GFD-SVM method
extracts the graphlets which are more complex [18]. Hence,
the extraction time of our GFD-SVM method is longer but
it is still acceptable.

While the GFD estimation just takes seconds of work to
analyze each single app, the total calculation time mainly
depends on the size of the dataset. Because all apps and their
FCGs are independent with each other, the topological fea-
tures extraction work is absolutely convenient for distributed
computing system. And the overall system is expected to be
more efficient if it is setup on a cloud computing systemwith
more powerful servers. Analyzing single extraction work, we
note that GFD estimation is dominated by the generation of 1-
hop neighborhood on GG and theminimumDFS code compu-
tations (for graphlet-type identification), which are indepen-
dent to the size of the graph unless the graph is dense.

By contrast, the DFD calculation needs to traverse every
edge and employ a sorting algorithm to the vertices. So
it takesmore time to do the DFD calculation especially on the
complex networks. For instance, DFD calculation takes about
41 seconds for the Facebook application, 7 seconds longer
than the GFD estimation. Therefore, GFD estimation, and
hence ACTS, is practically efficient and accurate (Section 1).

The efficiency and accuracy also drive us to move the
detection platform to Android itself. It seems possible that
each smartphone could analyze its own applications
because the total size of analysis tool is relative small (ACTS
is 65 MB and a vector of 1,000 software samples is about
2 MB). Deploying such distributed detection system will
allow us to aggregate and analyze the software swiftly.

6 RELATED WORKS

The present work follows a line of recent works [1], [2], [9],
[19], [33], [36] that apply advances in machine learning and
data mining for Android malware detection. Some of them

were based on semantic information, which includes the
signatures, API calls, opcode, and Java methods. DroidAPI-
Miner focused on API level information within the bytecode
since APIs convey substantial semantics about the apps
behavior [1]. More specifically, DroidAPIMiner extracted
the information about critical API calls, their package level
information, as well as their parameters and use these fea-
tures as the input of classification. Droid Analytics designs
a signature based analytic system [36]. This system can
automatically generate the signatures based on the input
Android application’s semantic meaning at the opcode
level. Unlike previous signature-based approaches, which
are vulnerable with bytecode-level transformation attacks,
Droid Analytics can defense against repackaging, code
obfuscation, and dynamic payloads [25]. Drebin was a com-
bination of previous semantic based detection methods [2].
It extracted string features from multiple Android-specific
sources, e.g., intent/permission requests, API calls, network
addresses. Although these semantic features directly reflect
the application’s behavior, novel code encryption and
obfuscation method made these methods hard to extract the
useful information [8]. In this paper, our idea is exploring
the application feature space to find some special features,
which may be indirect with application’s behavior, but they
should be hard to be obfuscated.

One major kind of indirect feature space is the structure
information. Researchers first builded a FCG to show the
relationships between functions. Then, Martinelli et al. com-
pared the subgraphs in the input FCGs with known benign
or malicious applications’ FCGs, which formulates the mal-
ware detection problem as a subgraph mining problem [19].
Zhang et al. introduced weight to FCGs and their FCGs
contained both Java methods and APIs [35]. They selected
critical APIs and set different weights to nodes when these
nodes’ APIs have different importance. After that, a similar-
ity score is given between two FCGs to measure the distance
when converting one FCG to another, by adding/deleting
edges and nodes. In MaMaDroid, Mariconti et al. also
added API information in FCGs [18]. They used a Markov
chain to extract the structural information in FCGs.
Although these structure-based detection method focused
on the indirect features, all these features, e.g., the big
subgraphs, the distance between graphs, and the linear
linking relationships, are easy to be obfuscated. For

Fig. 14. ROC curve of detection result combining with MaMaDroid. Fig. 15. Feature extraction time of different methods.

GAO ETAL.: ANDROID MALWARE DETECTION VIA GRAPHLET SAMPLING 2765

Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on October 07,2020 at 18:24:12 UTC from IEEE Xplore. Restrictions apply.

example, adversaries can simply add some edges, i.e.,
dummy call relationships, to make the malicious sub-
graph looks benign. In this paper, we choose the fre-
quency of graphlets because it is harder to build desired
graphlets without affecting existing graphlets. The term
of graphlet was first propose by Pr�zulj et al. [22]. Two
recent advances on graph mining, GRAFT [23] and
GUISE [24], inspire our use of GFD as a robust and effi-
cient topological signature for apps.

Besides semantic information and structure information,
researchers also use other features to enhance static classifi-
cation performance. FeatureSmith did not directly give the
feature space. Instead, it applied Natural Language Process-
ing (NLP) analysis to automatically collect features from
other security papers [40]. However, the performance of
FeatureSmith relied on other detection methods. DroidSieve
used semantic features as well as resource centric fea-
tures, e.g., certificates and their time, nomenclature,
inconsistent representations, incognito applications, and
native codes. Although DroidSieve gained success with
the comprehensive feature space, it would be vulnerable
if the attackers are aware about the feature space and
obfuscate every feature.

7 CONCLUSION

In this paper, we propose GFD as a feature for Android mal-
ware detection and adapt recent advances in graph mining to
make GFD estimation robust and efficient. We demonstrate
that local topological information (captured by graphlets) is
attributed to improvement in malware detection accuracy
and efficiency. This provides a new angle to Android mal-
ware detection research, and suggests that finding structural
features (e.g., graphlets) on a graphical representation of
Android apps (e.g., the FCG) that situates between local and
global scope as a fertile ground for future research.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation under Grant CNS-1560020 and Grant DUE-
1431330.

REFERENCES

[1] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-level
features for robust Malware detection in android,” in Security and
Privacy in Communication Networks. Berlin, Germany: Springer,
2013, pp. 86–103.

[2] D. Arp, M. Spreitzenbarth, M. H€ubner, H. Gascon, and K. Rieck,
“DREBIN: Effective and explainable detection of Android malware
in your pocket,” in Proc. ISOC Netw. Distrib. Syst. Secur. Symp., 2014,
pp. 23–26.

[3] S. P. Borgatti and M. G. Everett, “A graph-theoretic perspective on
centrality,” Social Netw., vol. 28, no. 4, pp. 466–484, 2006.

[4] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, 2011,
Art. no. 27.

[5] S. A. Cook, “The complexity of theorem-proving procedures,”
in Proc. ACM Symp. Theory Comput., 1971, pp. 151–158.

[6] C. Cortes and V. Vapnik, “Support-vector networks,” Mach.
Learn., vol. 20, no. 3, pp. 273–297, 1995.

[7] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, “Size-
dependent degree distribution of a scale-free growing network,”
Phys. Rev. E, vol. 63, no. 6, 2001, Art. no. 062101.

[8] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab,
“A review on feature selection in mobile Malware detection,”
Digit. Investigation, vol. 13, pp. 22–37, 2015.

[9] H. Gascon, F. Yamaguchi, D.Arp, andK. Rieck, “Structural detection
of Android malware using embedded call graphs,” in Proc. ACM
Workshop Artif. Intell. Secur., 2013, pp. 45–54.

[10] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, “Introducing
Markov chainMonte Carlo,” inMarkov ChainMonte Carlo in Practice.
Berlin, Germany: Springer, 1996, pp. 1–19.

[11] J. Grunzweig, “Nickyspy,” Oct. 2011. [Online]. Available: https://
www.trustwave.com/Resources/SpiderLabs-Blog/NickiSpy-C—
Android-Malware-Analysis–Demo/

[12] P. Indyk and R. Motwani, “Approximate nearest neighbors:
Towards removing the curse of dimensionality,” in Proc ACM
Symp. Theory Comput., 1998, pp. 604–613.

[13] X. Jiang, “SnDApps,” Jul. 2011. [Online]. Available: http://www.
csc.ncsu.edu/faculty/jiang/SndApps/

[14] M. Kuramochi and G. Karypis, “Frequent subgraph discovery,”
in Proc. IEEE Int. Conf. Data Mining, 2001, pp. 313–320.

[15] Antiy Labs, “Androguard,” 2014. [Online]. Available: https://code.
google.com/p/androguard/

[16] Y. Li, “Lovetrap,” Jul. 2011. [Online]. Available: https://www.
symantec.com/security_response/writeup.jsp?docid=2011–
072806-2905-99&tabid=2

[17] M. Lindorfer,M.Neugschwandtner, L.Weichselbaum,Y. Fratantonio,
V. Van Der Veen, and C. Platzer, “ANDRUBIS–1,000,000 apps later:
A view on current androidmalware behaviors,” in Proc. 3rd Int. Work-
shop Building Anal. Datasets Gathering Experience Returns Secur., 2014,
pp. 3–17.

[18] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross,
and G. Stringhini, “MaMaDroid: Detecting android malware by
building Markov chains of behavioral models,” in Annual Sympo-
siumNetw. Distributed Syst. Security (NDSS), 2017.

[19] F. Martinelli, A. Saracino, and D. Sgandurra, “Classifying Android
malware through subgraphmining,” inData PrivacyManagement and
Autonomous Spontaneous Security. Berlin, Germany: Springer, 2014.

[20] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,
and E. Teller, “Equation of state calculations by fast computing
machines,” J. Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[21] S. Narang, “Tapsnake,” Dec. 2013. [Online]. Available: http://www.
symantec.com/connect/blogs/android-tapsnake-mobile-scareware-
ads-push-antivirus

[22] N. Pr�zulj, D. G. Corneil, and I. Jurisica, “Modeling interactome:
Scale-free or geometric?” Bioinf., vol. 20, no. 18, pp. 3508–3515, 2004.

[23] M. Rahman, M. Bhuiyan, and M. A. Hasan, “GRAFT: An approxi-
mate graphlet counting algorithm for large graph analysis,”
in Proc. ACM Int. Conf. Inf. Knowl. Manage., 2012, pp. 1467–1471.

[24] M. Rahman, M. A. Bhuiyan, M. Rahman, and M. A. Hasan,
“GUISE: A uniform sampler for constructing frequency histogram
of graphlets,” Knowl. Inf. Syst., vol. 38, no. 3, pp. 511–536, 2014.

[25] V. Rastogi, Y. Chen, and X. Jiang, “DroidChameleon: Evaluat-
ing android anti-malware against transformation attacks,” in
Proc. 8th ACM SIGSAC Symp. Inf. Comput. Commun. Secur.,
2013, pp. 329–334.

[26] P. Ribeiro, “Efficient and scalable algorithms for network motifs
discovery,” PhD thesis, Dept. Comput. Sci., Univ. Porto, Porto,
Portugal, 2011.

[27] J. Rodriguez, “Linking static anddynamic androidmalware analysis
through graph mining.” 2015. [Online]. Available: http://www.
engr.iupui.edu/departments/cigt/reu/workshop/2015/posters/
poster-rodriguez.pdf

[28] Saikoa, “DexGuard,” 2014. [Online]. Available: https://www.saikoa.
com/dexguard

[29] Saikoa, “ProGuard,” 2014. [Online]. Available: http://proguard.
sourceforge.net/

[30] H. A. Soufiani and E. Airoldi, “Graphlet decomposition of a
weighted network,” in Artificial Intell. Statistics, pp. 54–63, 2012.

[31] Botnet Research Team, “SandDroid: An apk analysis sandbox,”
2014. [Online]. Available: http://sanddroid.xjtu.edu.cn

[32] N. Viennot, E. Garcia, and J. Nieh, “Ameasurement study of Google
Play,” in Proc. ACM Int. Conf. Meas. Model. Comput. Syst., 2014,
pp. 221–233.

[33] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and
discovering vulnerabilities with code property graphs,” in Proc.
IEEE Symp. Secur. Privacy, 2014, pp. 590–604.

[34] X. Yan and J. Han, “gSpan: Graph-based substructure pattern
mining,” in Proc. IEEE Int. Conf. Data Mining, 2002, pp. 721–724.

[35] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware android
malware classification using weighted contextual API dependency
graphs,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2014,
pp. 1105–1116.

2766 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 12, DECEMBER 2019

Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on October 07,2020 at 18:24:12 UTC from IEEE Xplore. Restrictions apply.

https://www.trustwave.com/Resources/SpiderLabs-Blog/NickiSpy-C---Android-Malware-Analysis--Demo/
https://www.trustwave.com/Resources/SpiderLabs-Blog/NickiSpy-C---Android-Malware-Analysis--Demo/
https://www.trustwave.com/Resources/SpiderLabs-Blog/NickiSpy-C---Android-Malware-Analysis--Demo/
http://www.csc.ncsu.edu/faculty/jiang/SndApps/
http://www.csc.ncsu.edu/faculty/jiang/SndApps/
https://code.google.com/p/androguard/
https://code.google.com/p/androguard/
https://www.symantec.com/security_response/writeup.jsp?docid=2011--072806-2905-99&tabid=2
https://www.symantec.com/security_response/writeup.jsp?docid=2011--072806-2905-99&tabid=2
https://www.symantec.com/security_response/writeup.jsp?docid=2011--072806-2905-99&tabid=2
http://www.symantec.com/connect/blogs/android-tapsnake-mobile-scareware-ads-push-antivirus
http://www.symantec.com/connect/blogs/android-tapsnake-mobile-scareware-ads-push-antivirus
http://www.symantec.com/connect/blogs/android-tapsnake-mobile-scareware-ads-push-antivirus
http://www.engr.iupui.edu/departments/cigt/reu/workshop/2015/posters/poster-rodriguez.pdf
http://www.engr.iupui.edu/departments/cigt/reu/workshop/2015/posters/poster-rodriguez.pdf
http://www.engr.iupui.edu/departments/cigt/reu/workshop/2015/posters/poster-rodriguez.pdf
https://www.saikoa.com/dexguard
https://www.saikoa.com/dexguard
http://proguard.sourceforge.net/
http://proguard.sourceforge.net/
http://sanddroid.xjtu.edu.cn

[36] M. Zheng, M. Sun, and J. Lui, “Droid analytics: A signature based
analytic system to collect, extract, analyze and associate Android
malware,” in Proc. IEEE Trust Secur. Privacy Comput. Commun.,
2013, pp. 163–171.

[37] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged
smartphone applications in third-party android marketplaces,”
in Proc. ACM Conf. Data Appl. Secur. Privacy, 2012, pp. 317–326.

[38] W. Zhou, X. Zhang, and X. Jiang, “AppInk: Watermarking
android apps for repackaging deterrence,” in Proc. ACM SIGSAC
Symp. Inf. Comput. Commun. Secur., 2013, pp. 1–12.

[39] Y.Zhou andX. Jiang, “Dissecting androidmalware: Characterization
and evolution,” in Proc. IEEE Symp. Secur. Privacy, 2012, pp. 95–109.

[40] Z. Zhu and T. Dumitras, “FeatureSmith: Automatically engineering
features for malware detection by mining the security literature,” in
Proc. ACMSIGSACConf. Comput. Commun. Secur., 2016, pp. 767–778.

Tianchong Gao is working toward the PhD
degree in the Department of Electrical and Com-
puter Engineering, Indiana University-Purdue Uni-
versity Indianapolis. His co-advisors are Dr. Feng
Li and Dr. Xiaojun Lin. He hasworked on problems
on security, privacy, and social networks. His
research vision is to explore the privacy issues in
computing and networking.

Wei Peng received the PhD degree in computer
science from Purdue University, in May 2015. He
is a software engineer with Inter Corporation. His
co-advisors are Dr. Feng Li and Dr. Xukai Zou. He
implemented and maintained tools that support
and automate key development workflow of the
Intel Windows Operating Systems (WOS) team.
He has worked on problems on delay-tolerant net-
works, security, privacy, and social networks. His
research vision is to explore human factors in com-
puting and networking and, in turn, make them
more human friendly.

Devkishen Sisodia is working toward the PhD
degree in the Department of Computer and Infor-
mation Science, University of Oregon. He is in the
Network & Security Research Laboratory (NET-
SEC) advised by Dr. Jun Li. He hasworked on prob-
lems on reliable detection of IP prefix hijacking,
Internet routing forensics, self-organized universe
of people, and DNS security investigation and
monitoring.

Tanay Kumar Saha received the bachelor’s and
master’s degrees from the Bangladesh University
of Engineering and Technology (BUET) and
Indiana University - Purdue University Indiana-
polis (IUPUI), respectively. He is working toward
the PhD degree at Purdue University, West Lafay-
ette. His works are at the intersection of networks
theory and machine learning. His research inter-
ests include developing data mining and machine
learning algorithms for novel applications in vari-
ous domains, such as, text mining, biology, and

security. He had the opportunity to work with a number of industrial
research labs including NEC Labs, the Data Analytics Team at QCRI,
and iControl ESI.

Feng Li received the PhD degree in computer sci-
ence from Florida Atlantic University, in Aug. 2009.
He is an associate professor of computer and
information technology, Indiana University-Purdue
University Indianapolis (IUPUI). His PhD advisor is
Dr. Jie Wu. He joined the Department of Computer
and Information Technology, IUPUI, in Aug. 2009.
His research interests include the areas of cyber-
security and trust issues, cloud, and mobile com-
puting. He has published more than 50 papers in
top conferences including INFOCOM and ICDCS.

Mohammad Al Hasan received the PhD degree
in computer science from the Rensselaer Poly-
technic Institute, New York, in 2009. He is an
associate professor of computer science with
Indiana University- Purdue University, Indianapo-
lis (IUPUI). Before that, he was a senior research
scientist with eBay Research Labs, San Jose,
California. His research interest focuses on
developing novel algorithms in data mining, data
management, information retrieval, machine
learning, social network analysis, and bio-infor-

matics. He has published more than 30 research articles in top-tier data
mining conferences and journals. He has received various awards,
including the PAKDD Conference Best Paper Award in 2009, SIGKDD
Doctoral Dissertation Award in 2010, NSF CAREER award in 2012, and
IUPUI School of Science Pre-tenure Research award in 2013.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

GAO ETAL.: ANDROID MALWARE DETECTION VIA GRAPHLET SAMPLING 2767

Authorized licensed use limited to: UNIVERSITY OF OREGON. Downloaded on October 07,2020 at 18:24:12 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

